Selective conversion of methane to C₂ hydrocarbons using carbon dioxide over Mn–SrCO₃ catalysts

Yingchun Cai, Lingjun Chou, Shuben Li*, Bing Zhang, and Jun Zhao

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Received 29 August 2002; accepted 3 December 2002

The combination of Mn with SrCO₃ leads to effective catalysts for the selective conversion of CH₄ to C_2 hydrocarbons using CO₂ as an oxidant; C_2 selectivities approach 88 and 79.1% with a C_2 yield of 4.3 and 4.5% over catalysts with an Mn/Sr ratio of 0.1 and 0.2, respectively. It is assumed that the Mn³⁺/Mn²⁺ couple formed in the reaction plays an important role in the activation of CO₂ and CH₄.

KEY WORDS: methane; carbon dioxide oxidant; Mn-SrCO3 catalysts.

1. Introduction

Recently, increasing attention has been paid on the conversion of natural gas using CO₂ as an oxidant [1]. It is well known that natural gas in many areas contains CO_2 in large quantity in addition to CH_4 and other lower alkanes. It would be highly desirable to utilize such lowvalued natural gas without emission of CO₂ and convert CH₄ and CO₂ into valuable chemicals or fuels simultaneously. Unlike oxidative coupling of methane using O₂ as an oxidant, in the reaction of CH₄ with CO₂ to produce C₂ hydrocarbons, CO₂ will not induce gasphase radical reactions, so this reaction will mainly be controlled by heterogeneous catalysis. Equilibrium conversions of CH₄ to C₂H₆ and C₂H₄ in this process were evaluated by Wang et al. and the results showed that yields of C₂H₆ and C₂H₄ exceed 15 and 25%, respectively, under suitable reaction conditions [2]. The key point for realization is to develop an efficient catalyst. A series of binary oxide catalysts, such as CaO-CeO₂ [2], CaO-ZnO [3], Ca-Cr₂O₃ [4] and La₂O₃-ZnO [5] were found to be effective for this reaction. Unfortunately, there are very few reports on Mn-containing catalysts, although Mn is one of the most extensively studied components in oxidative coupling of methane [6]. Recently, a series of Mn-based binary oxide catalysts were developed by Wang and Ohtsuka [7], but the catalytic performance was not satisfactory. This work was focused on the development of a more effective catalyst system for C₂ formation from CH₄ and CO₂. A novel catalyst system, Mn-SrCO₃, was developed on the basis of our previous work [8].

2. Experimental

Catalysts with different Mn/Sr ratios were prepared by simultaneously adding solutions with appropriate concentrations of Mn(NO₃)₂ (AR), and Sr(NO₃)₂ to 1.1 times its stoichiometric requirement of a well stirred 0.5 M aqueous solution of K_2CO_3 maintained at 70 °C. The slurry (pH \approx 7.0) was filtered and then washed several times with distilled water. The resultant material was dried at 110 °C overnight and then calcined at 850–900 °C for 4–6 h. The calcined catalysts was crushed and sieved to 20–40 mesh.

X-ray diffraction (XRD) was performed on a D-MAX-RB diffractometer at 50 kV and 60 mA. The radiation source was $CuK\alpha$ with an Ni filter. XPS analysis of the catalysts was performed with a VG Escalab 210 spectrometer. An Mg target was used as the anode of the X-ray source with a power of 300 W. The background pressure in the detector chamber was less than 4.5×10^{-11} mbar. The pass energy of the analyzer was 30 eV in step increments of 0.06 eV. The binding energies were calibrated using the C 1s line as the reference. Near-surface compositions were calculated from peak areas using sensitivity factors, which were provided in the software of the instrument. The CO2 TPD technique was carried out on an AM-100 instrument on Mn-SrCO₃ catalyst with an Mn/Sr ratio of 0.2. Before TPD measurements, the reaction of CH₄ and CO₂ under partial pressures of 30.3 kPa CH₄ and 70.7 kPa CO₂ was carried out at 875 °C for 3 h, followed by quenching to room temperature and then replacing the feed gas with He at room temperature. The TPD run was then performed at a heating rate of 10 °C/min up to 950 °C.

The reaction was performed using a conventional fixed-bed Y-type quartz reactor operated at atmospheric pressure. The inner diameter of the reactor was 9.5 mm.

^{*}To whom correspondence should be addressed.

A 3.0 g amount of the catalyst was first loaded in the reactor and then calcined again with air ($100\,\mathrm{ml/min}$) at $875\,^{\circ}\mathrm{C}$ for 1 h, followed by purging with N_2 ($\geq 99.999\%$, $100\,\mathrm{ml/min}$) for 1 h. Finally, a mixture of $\mathrm{CH_4}$ ($\geq 99.999\%$) and $\mathrm{CO_2}$ ($\geq 99.999\%$) was introduced into the reactor. Unless otherwise described, the reaction temperature was $875\,^{\circ}\mathrm{C}$ and the partial pressures of $\mathrm{CH_4}$ and $\mathrm{CO_2}$, denoted $P(\mathrm{CH_4})$ and $P(\mathrm{CO_2})$, were 30.3 and 70.7 kPa, respectively. After removal of $\mathrm{H_2O}$, the effluent gas was analyzed using an on-line high-speed gas chromatograph. A molecular sieve 5A column was used for the analysis of $\mathrm{H_2}$, $\mathrm{CH_4}$, CO and $\mathrm{CO_2}$; $\mathrm{CH_4}$, $\mathrm{C_2H_6}$ and $\mathrm{C_2H_4}$ were analyzed simultaneously with a Porapak Q column. The following overall reactions were taken into account for data processing:

$$2CH_4 + CO_2 = C_2H_6 + CO + H_2O$$
 (1)

$$2CH_4 + 2CO_2 = C_2H_4 + 2CO + 2H_2O$$
 (2)

$$CH_4 + 3CO_2 = 4CO + 2H_2O$$
 (3)

$$CH_4 + CO_2 = 2CO + 2H_2.$$
 (4)

The data processing method has been described elsewhere [4].

3. Results and discussion

3.1. Effect of catalyst composition on catalytic performance

Table 1 shows the effect of the Mn/Sr ratio in the catalyst on the performance at 875 °C. As can be seen, SrCO₃ alone showed no obvious catalytic effectiveness for the reaction, only 0.2% CH₄ conversion was detected; on the other hand, MnO₂ alone exhibited a high CH₄ conversion of 9.8%, but the C₂ selectivity was low, only 6.3%, thus the C₂ yield was very low over MnO₂ alone. For Mn–SrCO₃ catalysts, the CH₄ conversion decreased to some extent compared with that of MnO₂, but the C₂ selectivity and C₂ yield increased dramatically. With Mn content increasing and Sr content decreasing, the CH₄ conversion increased

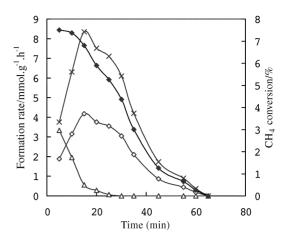


Figure 1. Reaction of CH_4 in the absence of CO_2 over the $Mn\text{-SrCO}_3$ catalyst. (\spadesuit) CH_4 conversion; (\diamondsuit) formation rate of CO; (\times) formation rate of H_2 ; (\triangle) formation rate of CO_2 .

and C_2 selectivity decreased. CH_4 conversion, C_2 selectivity and C_2 yield were 5.7, 79.1 and 4.5%, respectively, at an Mn/Sr ratio of 0.2. It should be pointed out that not only the C_2 selectivity but also the C_2 yield for the Mn–SrCO₃ catalysts is higher than that for each component. It is therefore evident that a synergy effect in C_2 formation exists between the two components. The catalyst with an Mn/Sr ratio of 0.2 was investigated in detail since it exhibited the highest C_2 yield.

3.2. Role of CO_2 in the conversion of CH_4 to C_2 hydrocarbons

To clarify the role of CO₂, the reactions of CH₄ over the Mn–SrCO₃ catalyst in the absence and presence of CO₂ were compared. In the absence of CO₂ (figure 1), the CH₄ conversion was 7.5% in the initial stage, and CO₂ and H₂O were formed at an early stage. After 20 min, only CO and H₂ were detected, the CH₄ conversion decreased abruptly with time on-stream; after about 65 min the reaction almost stopped and CO and H₂ were no longer produced. During the whole process, no C₂ hydrocarbons were detected. The reaction without CO₂ must arise from lattice oxygen atoms in the catalyst.

Table 1
Effect of catalyst composition on catalytic performance

Catalyst	CH ₄ conversion (%)	CO ₂ conversion (%)	C ₂ H ₄ selectivity (%)	C ₂ H ₆ selectivity (%)	C ₂ yield (%)
SrCO ₃	0.2	0.1	0	0	0
Mn/Sr (0.05)	1.3	0.5	10.5	70.0	1.0
Mn/Sr (0.1)	4.9	1.8	31.6	56.3	4.3
Mn/Sr (0.2)	5.7	2.3	28.4	50.7	4.5
Mn/Sr (0.3)	6.1	2.9	24.7	42.7	4.1
Mn/Sr (0.4)	6.3	3.2	20.6	40.5	3.8
Mn/Sr (0.6)	7.1	4.3	16.3	29.1	3.2
Mn/Sr (0.8)	8.3	5.3	14.6	24.3	3.1
Mn/Sr (1.0)	8.8	6.4	10.9	13.4	2.1
MnO_2	9.8	7.1	1.1	5.2	0.6

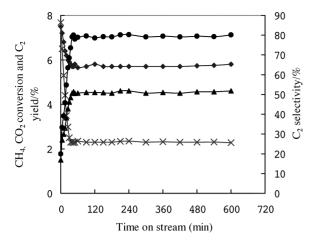


Figure 2. Change in catalytic performance of Mn–SrCO₃ with time on-stream. (\spadesuit) CH₄ conversion; (\times) CO₂ conversion; (\spadesuit) C₂ selectivity; (\blacktriangle) C₂ yield.

Thus, the lattice oxygen is non-selective for C₂ formation. When CO_2 was co-fed (figure 2), a large amount of H₂O was formed during the initial 5 min; CO₂ in the effluent decreased at the same time. After 10 min, CO, C₂H₆ and C₂H₄ were detected. CH₄ and CO₂ conversion and C_2 formation reached a steady state after \sim 40 min; the C₂ selectivity approached about 80% with a C₂ yield of 4.5%. The results did not change even when the time on-stream was prolonged to 10 h (figure 2). The catalysts before reaction and after reaction for 1 or 10 h were subjected to XRD measurements. The results (figure 3) show that, before reaction, the crystalline phase of the catalyst was $SrCO_3$ and β - Sr_2MnO_4 ; after reaction of 1 h, the crystalline phase changed to SrCO₃, MnO and Mn₂O₃, and the crystalline phase at 1 h did not change during further reaction. The results described above indicate that the oxygen species responsible for selective C_2 formation is not from lattice oxygen, but is generated from CO₂ during the reaction.

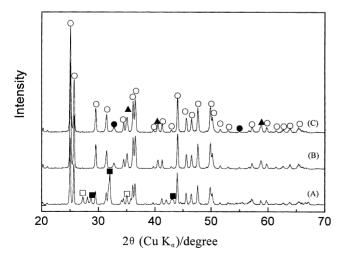


Figure 3. X-ray diffraction patterns for fresh and reacted catalysts. (A) Fresh catalyst; (B) catalyst after reaction for 1 h; (C) catalyst after reaction for 10 h. (\bigcirc) SrCO₃; (\blacksquare) β -Sr₂MnO₄; (\square) SrMnO₃; (\blacktriangle) MnO; (\blacksquare) Mn₂O₃.

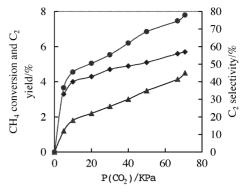


Figure 4. Catalytic activity as a function of partial pressure of CO_2 over the catalyst with an Mn/Sr ratio of 0.2. (\spadesuit) CH_4 conversion; (\spadesuit) C_2 selectivity; (\blacktriangle) C_2 yield.

A more detailed dependence of the performance of the Mn– $SrCO_3$ catalyst (with an Mn/Sr ratio of 0.2) on $P(CO_2)$ is plotted in figure 4. The results show that not only the C_2 selectivity but also the C_2 yield increased slightly with increase in $P(CO_2)$. It should be noted that CO_2 plays a key role in C_2 formation and achieving a high C_2 selectivity.

3.3. Effect of reaction temperature on the performance of Mn–SrCO₃

Figure 5 shows the temperature dependence of the catalytic performance at P(CO₂) of 70.7 kPa. As can be seen, the CH₄ conversion and C₂ yield increased with increase in reaction temperature, and an increase in reaction temperature above 825 °C decreased the C₂ selectivity. The C₂ selectivity exceeded 90% at 825 °C and the C₂ yield reached 4.5% at 875 °C with a C₂ selectivity of 79.1%. At 900 °C, the C₂ yield was a maximum of 5.1% with a C₂ selectivity of 68.1%. Although these values are still insufficient from a practical point of view, the observed yield is one of the best results among a series of results recently reported.

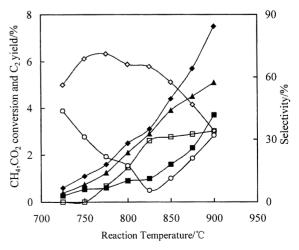


Figure 5. Effect of temperature on catalytic performance of Mn–SrCO₃. (\spadesuit) CH₄ conversion; (\blacksquare) CO₂ conversion; (\blacktriangle) C₂ yield; (\square) C₂H₄ selectivity; (\diamondsuit) C₂H₆ selectivity; (\bigcirc) CO selectivity.

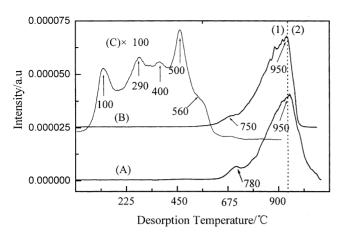


Figure 6. Profiles of CO₂ desorption from the catalysts after reaction. (A) SrCO₃; (B) Mn–SrCO₃; (C) MnO₂. Region (1), temperature increased with time; region (2), temperature decreased.

3.4. Characterization of the Mn-SrCO₃ catalyst after reaction

In order to explain the above phenomena and deduce the possible mechanism over Mn–SrCO₃ catalyst, CO₂ TPD, XRD and XPS studies were carried out.

To examine the chemisorption of CO_2 on the $Mn-SrCO_3$ catalyst after reaction, CO_2 TPD measurements were performed. Figure 6 shows the TPD results in an He flow. Two desorption peaks were observed in the case of $Mn-SrCO_3$ catalyst. The peak temperature of one was $750\,^{\circ}C$, and the other peak increased with the increase in desorption temperature even up to $950\,^{\circ}C$. These results may partly explain the facts that the reaction of CH_4 and CO_2 to produce C_2 hydrocarbons only takes place when the reaction temperature exceeds $750\,^{\circ}C$ and the C_2 yield increased with increase in reaction temperature. It is noteworthy that when the

desorption temperature decreased after 950 °C, the desorption peak also decreased, so it is reasonable to deduce that the desorption peak of higher temperature is derived, at least partly, from the dissociation of SrCO₃. For comparison, CO₂ TPD was also carried out on both reacted MnO₂ and SrCO₃ catalysts. As shown in figure 6, the results obtained over SrCO₃ are very similar to those for the Mn–SrCO₃ catalyst. Although four CO₂ TPD peaks were observed over reacted MnO₂ catalyst, none of the peak temperature was higher than 600 °C. No CO₂ TPD peak attributable to MnO₂ was detected over Mn–SrCO₃ catalyst, hence the results may show that during the reaction of CH₄ and CO₂, CO₂ only desorbed on Sr sites.

The Mn–SrCO $_3$ catalyst after reaction at 875 °C under a $P(CO_2)$ of 70.7 kPa for 10 h was quenched to room temperature and instantly subjected to XRD analysis. The XRD patterns, which may be seen in figure 3, show that before reaction, SrCO $_3$ and β -Sr $_2$ MnO $_4$ are the main crystalline phase, and SrCO $_3$, MnO and Mn $_2$ O $_3$ were detected after reaction. Thus, bulk carbonate of Sr was formed during the reaction over the Mn–SrCO $_3$ catalyst. Based on the XRD results and the fact that a large amount of H $_2$ O was formed at the early stage of the reaction of CH $_4$ and CO $_2$, we deduce that the following process may take place:

$$9Sr_2MnO_4 + 18CO_2 + 2CH_4 \longrightarrow$$

 $18SrCO_3 + 3MnO + 3Mn_2O_3 + 2CO + 4H_2O.$ (5)

Figure 7 shows the binding energy of Mn $2p_{3/2}$ in fresh Mn–SrCO₃ catalyst and the catalysts after reaction times of 1 and 10 h. As shown in figure 7, the Mn $2p_{3/2}$ binding energy in the fresh Mn–SrCO₃ catalyst was 642.2 eV, indicating that Mn was present mainly as Mn⁴⁺. The binding energy of Mn $2p_{3/2}$ shifted to 641.3

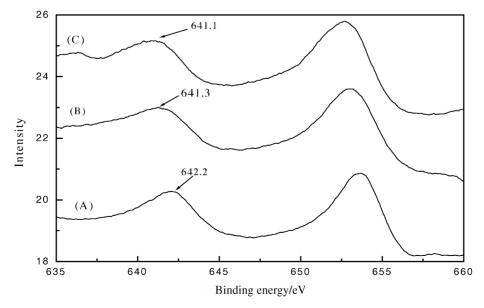


Figure 7. XPS spectra in the Mn 2p region of catalysts before and after reaction: (A) Fresh Mn–SrCO₃ catalyst; (B) Mn–SrCO₃ catalyst after reaction for 1 h; (C) Mn–SrCO₃ catalyst after reaction for 10 h.

 $Table\ 2$ Variation of Mn/Sr atomic ratio in fresh and reacted Mn–SrCO $_3$ (Mn/Sr = 0.2) catalysts.

Catalyst	Fresh	After reaction for 1 h	After reaction for 10 h
Mn/Sr	0.22	0.089	0.084

and 641.1 eV after reaction times of 1 and 10 h, indicating that Mn³⁺ and Mn²⁺ predominated [9-11], these results are consistent with the XRD results. Table 2 lists the near-surface Mn/Sr ratios of Mn-SrCO₃ catalyst before and after reaction. The near-surface Mn/Sr ratio, as determined by XPS, was 0.22 before reaction and 0.089 and 0.084 after reaction times of 1 and 10 h, respectively, so during the first 1h of the reaction of CH₄ and CO₂, Sr obviously migrated to the near-surface of the Mn-SrCO₃ catalyst. As time went on, the migration of Sr became insignificant, and the Mn/Sr ratio at 10 h closely approximated that at 1 h. The XPS results also show that no carbon deposit was detected on both catalysts after reaction times of 1 and 10h. Based on the XPS results and the fact that the catalytic performance of Mn/Sr changed considerably in the first 1 h and then remained stable, we deduced that the Mn component is related to the activity of the Mn-SrCO₃ catalyst whereas the Sr component is related to the C_2 selectivity. In the initial stage, the Mn concentration on the surface of the Mn-SrCO₃ catalyst was relatively high while the Sr concentration was relatively low, so a higher CH₄ conversion and lower C₂ selectivity were obtained. As the reaction proceeded, Sr migrated to the surface of the catalyst and the Mn/Sr ratio decreased rapidly, so the CH₄ conversion decreased and C₂ selectivity increased correspondingly. After reaction for 1 h, the Mn/Sr ratio remained constant and the catalytic performance also remained stable. The results in table 1 indicating that, with increasing Mn content and decreasing Sr content, the CH₄ conversion increased but the C₂ selectivity decreased may also be attributed to the deduction that the Mn component is related to the activity whereas the Sr component is related to the C₂ selectivity.

3.5. Possible mechanism for the reaction of CH₄ and CO₂ to produce C₂ hydrocarbons over Mn–SrCO₃ catalysts

On the basis of all the above findings, the possible mechanism for CH_4 and CO_2 to produce C_2 hydrocarbons over Mn– $SrCO_3$ catalysts is as follows:

$$SrCO_3 \xrightarrow{\Delta} SrO + CO_{2(a)}^*$$
 (6)

$$CO_{2(a)}^* + Mn^{2+} \longrightarrow Mn^{3+} + CO + O^-$$
 (7)

$$O^- + 2CH_4 + Mn^{3+} \longrightarrow 2CH_3 + H_2O + Mn^{2+}$$
 (8)

$$2CH_3$$
 $\rightarrow C_2H_6$ (9)

$$C_2H_6 \longrightarrow C_2H_4 + H_2 \tag{10}$$

$$SrO + CO_2 \longrightarrow SrCO_3.$$
 (11)

 $SrCO_3$ may first dissociate at high reaction temperature to produce SrO and adsorbed $CO_{2(a)}^*$, the adsorbed $CO_{2(a)}^*$ may then be activated by reduced Mn^{2+} , CO and O^- are formed, the surface reactive oxygen species O^- on Mn– $SrCO_3$ abstract hydrogen from methane to give methyl radicals, which in turn are converted to C_2 hydrocarbons. SrO from the dissociation of $SrCO_3$ may react with carbon dioxide in the gas phase to produce $SrCO_3$ again.

On the basis of the above discussion, the reason why MnO-SrCO₃ is effective for the CH_4 – CO_2 reaction can be attributed to both the dissociation of $SrCO_3$ to form $CO_{2(a)}^*$ and the formation of an Mn^{3+}/Mn^{2+} couple to activate $CO_{2(a)}^*$ and in turn to activate CH_4 .

4. Conclusion

Mn–SrCO₃ catalysts are effective for the conversion of CH₄ to C_2 hydrocarbons using CO₂ as an oxidant. C_2 selectivities approach 88 and 79.1% with C_2 yields of 4.3 and 4.5% over the catalysts with Mn/Sr ratios of 0.1 and 0.2, respectively.

The possible mechanism for C₂ formation over Mn–SrCO₃ catalysts was deduced as follows: CO₂ dissociated from SrCO₃ may be activated by reduced Mn²⁺ to form active oxygen species (O⁻), then O⁻ activates CH₄ to form CH₃ radicals, which in turn are converted to hydrocarbons.

Acknowledgment

The authors gratefully acknowledge financial support for this work from the Ministry of Science and Technology (grant 1999022406).

References

- K. Asami, T. Fujita, K. Kusakabe, Y. Nishiyama and Y. Otsuka, Appl. Catal. A: Gen. 126 (1995) 245.
- [2] Y. Wang, Y. Takahashi and Y. Ohtsuka, J. Catal. 186 (1999) 160.
- [3] Y. Wang and Y. Ohtsuka, J. Catal. 192 (2000) 252.
- [4] Y. Wang, Y. Takahashi and Y. Ohtsuka, Chem. Lett. (1998) 1209.
- [5] C.L. Chen, Y.D. Xu, G.J. Lin and X.X. Guo, Catal. Lett. 42 (1996)
- [6] S.B. Li, Chin. J. Chem. 19(1) (2001) 16.
- [7] Y. Wang and Y. Ohtsuka, Appl. Catal. A: Gen. 219 (2001) 183.
- [8] Y.C. Cai, L.J. Chou, S.B. Li, B. Zhang and J. Zhao, Chem. Lett. (2002) 828.
- [9] R.W. Juddy, C. Komodromos and T.J. Reyonlds, Catal. Today 13 (1992) 237.
- [10] B.R. Strohmeier and D.M. Hercules, J. Phys. Chem. 88 (1984) 4922.
- [11] M. Oku, K. Hirokawa and S. Ikeda, J. Electron Spectrosc. Relat. Phenom. 7 (1975) 465.